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1. INTRODUCTION

In applying the Uniform Geometrical Theory of Diffraction (1JTD) to

antenna radiation problem involving curved surfaces, a major task is to

determine the final diffraction point and the geodesic path on the

curved surface. For the antennas mounted on the fuselage of an

aircraft, the fuselage can he modeled as an ellipsoid in the IJTD

analysis. Geodesic paths on an ellipsoid have been studied in detail in

References [2,31 using an elliptic cone perturbation method which is

very efficient.

Using this perturbation method and another numerical technique,

which will be given in this report, the radiation patterns for ellipsoid

mounted antennas is efficiently obtained. The theoretical UTD concept

to calculate actual radiation fields is given in References [1,21.

II. NUMERICAL TECHNIQUE

A. INTRODUCTION

The ellipsoid simulated by a perturbed elliptic cone model is

examined here. Since the elliptic cone is a developable surface,

geodesics can be easily obtained [2,31. Given a radiation direction

(' t, ,t), one can find the final diffraction point ('QQ, tQ) by following

the geodesic path, step by step, until the geodesic tangent coincides



with the radiation direction (5t, St). This is a rather tedius and time

consuming process if applied for each new radiation direction.

Considering a new radiation direction, which does not deviate greatly

from the previous direction, one should be able to develop a solution

which uses the properties of the surface and the previous geodesic path

to find the new diffraction point. Such an approach is attempted here

to make this solution as efficient as possible.

Since the field decays exponentially along the ray path on the

surface, it is assumed that only one or possibly two dominant rays exist

in the problems treated. One is referred to References [2,31 for more

details on this topic.

B. NUMERICAL APPROACH FOR PATTERN CALCULATION

Assuming the diffraction point is located at 0 (a cos ve cos Vr,

b cos ve sin Vr, c sin ve) and the field point at P (Rt sin 'j t cos t,

Rt sin It sin t, Rt cos 't), then at the diffraction point 0 the

radiation direction (0t, t) should coincide with the geodesic tangent t

as shown in Figure 1. Thus,

t x tx +yt +zt z

t cos 11 + t sin
whee

where



K

tt



sint, Co Cs v Co v r

t = t

sin ~ ~ Itsn Cos v Cos v

ty = Dt

and
Cos 'I - C- sin v

tz = 0t

Note that

0 2 in9 cos a COSV COSV )2 +sn
t t-l~t r (inot in%

-b cosv sinv )2 + CS - C iv)

e r t Ty e

2rsin9 t cosv e(a cos tCosv r+ b sin t sinv r

+ C cos sn 1 + Fcos 2~ v a2 co ~v + b2 sin 2v + 4 C2 si 2
T- t e, e R r -7 r R e

t t t
,and

xasinvr(b 2sin 2ve4-c 2 COS2 v)+ y~cs~ a2 sn2 v+c 2 COS 2  
- -

a~h?~sin~ve 4c2cos2v (a2sin~v +b2cos~v )11/2

+Zh -t 2a 2)siflvr COSVr sifve COsve
[c~cos2v e jsn~ve (a2 COS 2v r -b2 sin2 v r )11/ 2

t 4



where

te e -xa Sinve COsvr -yb SinVe siflvr + ZC COS v
e 'a2sin 2v cos2v +b2sin 2v sin 2v +c2cos~v 11/2

1 R L e r e re

andV

xb COSxe cOSVe +iv +a COSb cSifvr + absifl

r 7accos2v si n2v a2cos2v +2 i~ ),12 /

e

xbcc~ve ~sa c cosve iv a iv

I ri c - R e r (1)csv bsn~ 1/

asnp ~ v i;

c~osv e+sn~ve a~cs~ r b~in~ r05



bcosvr cos3(a 2sin 2ve + C2 cosve)
Y [a2b2sin 2ve +c2cOs2ve(a2sin2vr+b2cos2vr) 11/2

[c2cos2v +sin 2v e(a2cos 2v +b2sin2vr)11/2

bsinve sinvr sWin

Ic2 vosv +sin 2v (a2cos 2v +b2sin 2v )11/2
e e r r

sin t sin-t Rt coSV siV (2)

c(b 2  2 )sinlvr cOsvr sinve cOsve COS'
z a2b2sin 2vP +c2cos 2v (a2sin 2v r+b2cos2v r )11/2

* Ic~cos 2v e+sin 2v e(a2cos2v r +b~sin 2v r )!1/2

C COSVe ifll
%2 2 csv +sin2 v (a2cos 2v +b2sin 2v )1112

e e r r

cos t - sinv (3)

When the source is located at the off-mid section (z t 0 in Figure

1), the ellipsoid is modeled hy a perturbed elliptic cone. The

associated unfolded surface is shown in Figure 2(b). If Y and f, denote

the angle between t and t1 at Q' and 0, respectively, it is seen that

? = y - 1. With some manipulation, one can show that the perturbed

ge-odesic path can be expressed as follows:

6
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re cos (-c-) =rs cos -y (4)

where

V r ra2h2 + Z2 cot4V (a2sin 2V' + b2cos2V')11/ 2

((V) = r ss S esS r S r dV
r Vrs a2cos2V' + b2sin 2V ' + Z2cot4v' r

s r s r s es

as=acosV e ,b = bcosV es 9 = csinVes

2 2 2 2 2 4 1/2
rs=(ascOs Vrs + bssin Vrs + Zscot yes)

re =(a 2Cos 2Vr + b 2sin 2Vr + Z 2cot 4Ves) 112 e

and

S =fV e Ifc2Co + (a 2cos 2V + 2si2 )sin 2 V112
e = c e rr V~1 de

Now, [tx (-b sin Vr) + a o Vri yields

2 2 .2 2 2 2 2 1/2
ab cos(y-i) [c cos Ve + sin V ~ (a+SV b sin Vr)l

[a~h~sin2Ve + c2cos2V (a2sin 2V + b2cos2V 1/

sinl (it (acosVr sin~t - hsinVr cosh) (5)

Next, FltxhcosVr + tyasiflVrlCCOsVe + tzahsiflVel Yields



absinVe coset + cslflOt cOsVe (asinqsinVr + bcoOtcOsVr)

.abc = (6)

Three functions can, then, be constructed as follows from Equations (4')-

(6):

F(VeVr,y) = recos(Y-a) -rscosy 0(7)

D abcos(y-c%)Ec2cos2V e + sin2V e(a~cos2V r + b2sin 2V r) 112

-sin9t (asin~t cosVr - bcos q sinVr)

r a2b2sin 2V e + c2cos 2V e (a2sin 2 Vr + b2cos 2 Vr) 11/ 2

=0()

Further, one finds that

absinVe cos(ot + csin~t cosVe (asinc t sinVr +bcos( t cosVr)

.abc~ * (9)

t7
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Provided that one has obtained a diffraction point (Ve, Vr) for a

receiver location (Rt. 9t, 't), a numerical technique can now be

developed from Equations (7), (8), and (9) to solve for (Ve + AVe, Vr +

AVr) dssociated with a new receiver location (Rt + ARt, 9t + Alt, t +

A>t). Assuming that the ith set of (Rt, 9t, 't, Ve, Vr) is first known

to satisfy Fi = Hi = Gi = 0, or at least approximately so, the next set

(Rt + %Rt, It + A,1t, t + Ait, Ve + AVe, Vr + AVr) is obtained by

enforcing Fi+ I = Hi+j = Gi I = 0, such that

Fi+1 Fi + FV W e F V r + F Y = 0
e r

. =+ G + G V V + G V r + G .%
i+I~ I e V r y

e r

G %t + G At + GR ARt 0t t R
t t t

and

H = H + H V Ve + Hv AVr + H t

+1 H I A e +r H Rt
e r t

H, HR Rt=:O

In matrix form, it is given by

FV FV F- AV e- -
eI

GVe GV Gy AVr -Gi G Aq - G At - GR AR
e r r t t t t t t

HV eHV r0 At j -Hi -Hr)tAq) - HetAt- HRtARt
(10)

10



Note that the partial derivations are given by the following:

F 2 o 2V +(a 2 Cs2 V+b 2 sn 2V )sin 2V 1/2
Ve cCse r r e Cos ky-a)

2
F b2 _ 2~ Cos Ves

FVr -ba, )sinV rcosV V +b2sin 2V 4Z2cot 4Ve )1/2
(s r s r s s

Ve 2
r sin Ve dVe cos(Y-Q)

- Ves rc2cos2V'+(a2cos2 +b2sin 2v )in2V'111/2

r sinhy-rx)fa b2+Z2 cot 4Ve (a 2si V 4-b 2Cos 2V 11

a2cos2V 4b2sin 2V -.Z2cot 4Vs r s r s e

Fy r sin y - re si ,-%

GV Dab(a 2Cos 2Vr+b 2sin 2Vr-C 2SilVecosVe COS(y-c)
e [c2cos2v e+(a 2cos2V r+b2si n2V r)si n2Ve 11/2

-Sin ~t(asin~tcosVr-bcos~tsinVr)[a 2b 2-(a 2sin 2Vr+b 2cos2 Vr)c 2 SinVeCOsVe
[(a2sin 2V r +b~cos2V r)c2cos 2V e+a2b2sin2V eil/2

+ abcos(y-a) c 2 Cos 2V +(a 2cos 2 Vr+b 2sin 2V)sinl2 V 1/2

C _ a2 os2Vr+b 2sn2Vr) sinV cosV
R2 e e
t

+ sin-I sinVe (a cos5 tCOOsr + b sin sinV r cos cos V Ot e~ t t7r t



GV=Dab cos(y-cxo)(b -_a 2)sinVr cosVr sinf2 Ve
r Ec~cos2V e+(a~cos2V r+b2sin 2v r)sin2 Ve ]1/2

+ Dab[c 2 Cs2 Ve+a2 cs2 V b2 sn 2 vr )sin 2 ve 1 12sin(y-x)

[a 2h2+Z2 cot 4V (asi2V b2Cs2V)12

s s s es (asinr +bs 2 r1

a~cos2V r+b2sin 2V +Z2 .Ot V e

+ sin~t(asinrcosVr-bcos~tsinVr)(h 2-a 2)sinVrcosVrc 2Cos 2Ve
[(a2siri2V r+b2cos2V r)c2cos2V e +a2b~sin2V e1112

+ sin t(asinutsinVr+bcos~tccosVr)[(a2sin2 Vr+b~cos2 Vr)

.c2COS2Ve+a 2b2sinl2Vell/ 2

+ aco(-Y(% C2Cos 2V +(a 2cos 2V +b 2sin 2V )sin 2v 1 1/2
'1 -e r r e

(b2-a2) sinV rcosV cos2Ve -sin9 tcosVe (b sin tcosVr

-a co., sinV)
zt-

, -fasin(-)c~cos?V e+(a 2cos2 Vr+b 2sin2Vr)sin2 Veil/?1



. [(a 2 2 vr +b 2 Cs 2vdc2 Cos 2V e+a 2 h2sin 2  1 l1/2

+ abcos(-y-ct) c 2 Cos 2 V+(a2 Cos 2~ V+b 2sin 2vr)si 2 V 11l 2

c~ sine sinV e cOS6 t COO e (a. Cos %cosVr + b sine tsin V )

G - sin\t(acos t cosV r+bsin tsinVr)

a 2 2sin 2V r+b 2Cos s2V r)c2 Cos 2V e+a 2b 2sin 2Ve 11/2

+ abcos(y-c%) [C2Cos 2 V+(a2 Cos 2V +b 2sin n2V r)sin 2 v 1 /2

sn t SnCOSV e ( sin4 tcosV r- b cos( tsinV r

GR = ab Cos(y-ci)[c 2 Cos 2V +(a2 Cos 2V +b2 sin 2V )sin 2 V 112
U-~ e r r e

f {sinet cosV e(a coCCosv r +b siri t sinV r + C cose tsinV e /
Rt

-[Cos2V e(a 2Cos2V r+b 2sin 2Vr )+c2 sin 2v e/R 31

t

t 13



HVe = ab cosV ecos9 t  c sinVe sint(asintsinVr + bcos tcosV r)

HVr = c cosVe sinOt (asinc tcosVr - bcostsinV)

Hy =0

Ho -ab sinVesin t + c cosVecoSqt(asintin + bcos

Het = c cosVesinot (a cos tsinVr - b sin tcosVr )

and

HR - abc
t T

t

It is seen that one can solve for (AVe, Wr, Ay), for a known (ARt, Aqt,

) ,using Equation (10). To obtain a diffraction point (Ve, Vr) for a

given receiver location (Rt, 9t, ,t), one can always assume the first

diffraction point is at the source (Ve, Vr) = (Ves, Vrs ) with the

radiation direction (9f, f = ') for the positive ray (in Y direction)

or Pf, = 31) for negative ray (in -Y direction), and gradually add

the increments (ARt, A)t', At) until the final radiation direction

(at, ,t) is reached as shown in Figure 3. More detail on this topic is

provided in Reference C41. One need not start out from the source

everytime, but obtains the new diffraction point directly from Equation

(10), provided that the new receiver location does not deviate greatly

from the previous direction.

After the geodesic path is determined, various other parameters

a';sociated with actual field calculation must be found. The Fock

parameter I was calculated in Reference [21 as follows:

t 14



A
tN

R P( 2 )

Figuro 3. Illustration of the diffraction point findinq for a
given receiver location.



S r 0-9 'dvr
r

where

[a h2 Z2cot 4Ve (a in 2'Ji 2 cocVr)1
d s s s s S r S r

Or a2cos2V ' + _2~2'_+z~cotv -

r s r s r s e

or

'Vs
S 1_ k g 1/ 3  

1 dSe d V
Ves -,g -T77- dVr e

e

Note that p + k I and k2 are two principal

curvatkires.

Next, the ray divergence factor IT ')  is defined as the change

in the separation of adjacent surface rays as shown in Figure 4. Since

the ellipsoid simulating the aircraft fuselage will he long and slender,

it is assurmed that the ray divergence factor is unity in the analysis.

This completes the elliptic cone perturhation solution for the

antenna ;iounted on the off-mid section of in ellipsoid.

g
16
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I1. RESULTS

The solutions presented in the previous chapter are employed to

compute the near field radiation patterns for short monopoles or slots

mounted on an ellipsoid.

To examine different conical pattern cuts, a cartesian coordinate

system (x',y',z') originally defining the ellipsoid geometry is now

rotated into a new system (x,y,z) as shown in Figure 5. Note that the

new cartesian coordinates are found by first rotating about the z'-axis

a angle c and then about the y-axis a angle Oc. The pattern is, then,

taken in the (x,y,z) coordinate system with p fixed and ,p varied.

To show the validity of the elliptic cone perturbation solution,

some typical sources, i.e., short monopole, axial slot and

circumferential slot, and various source locations are chosen as shown

in Figure 6.

For each case the following typical radiation patterns are

obtained:

a) 'c = 0, c 90° ')p = 90 ' (roll plane pattern)

h) 1)c = 30, c = 900, 1 p = 900

c) Oc = 600, c 900, 9p = 900

d) Ic = 90, c = 900, p = 90' (elevation plane pattern)

e ) 9c = 90 ° , :c  00, Ip = 90' (azimuth plane pattern).

The radiation patterns obtained by the ellipsoid program, which

uses an ellipsoid to simulate the aircraft fuselage, are compared to

those obtained using the spheriod solution [5] in each case.

i t , n i i , , , I " ,, . .
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It is noted that the geodesic tracing method of the ellipsoid

program for the side mounted antennas (Figures 9, 10, 11, 14, 15, 18,

19) is different from that of the spheroid program because the ellipsoid

is not a surface of revolution.

The exact agreement between the results of the ellipsoid program

and the spheroid program as shown in Figures 7-19 gives one confidence

about the validity of the elliptic cone technique.

Next, the ellipsoid program is employed to calculate the radiation

patterns due to antennas mounted on an ellipsoid surface. The typical

ellipsoid geometry (2X x 4x x MO) is chosen and examined for various

sources and source locations.

The cone boundary shown in Figure 32 is used in determining whether

one or two rays are used in the solution. Note that 212 is defined

automatically by determining the caustic angle in the elevation pattern

(,'C) and adding a few additional degrees to that value, i.e., ",I? =

3+ + where 20 , 100. One would expect to nhserve slight

discontinuities somewhere, because various numbers of rays are included

in different regions.

IV. CONCLUSIONS

The object of this study has been to develop an efficient numerical

solution for the high frequjency radiation patterns of an ellipsoid-

mounted antenna. The UTD is used in this study to calculate the

radiation patterns, and the elliptic cone perturhation m'ethiod is applied

21



to simulate the geodesic paths on the ellipsoid, which in turn can be

used to model an aircraft or missile fuselage. For a given radiation

direction in the shadow region, the geodesic path and final diffraction

point on the ellipsoid can, then, be found via an efficient numerical

approach.

The exact agreement of the radiation patterns from two different

programs confirms that this elliptic cone perturbation solution is very

useful in predicting the high frequency radiation patterns for antennas

mounted on the off-mid section of an ellipsoid.

This numerical solution will be employed, along wi.t flat plates to

construct a general solution for calculating radiation patterns due to

airborne antennas.

2?
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